Benefits of beta glucans, also known as 1 3 beta glucans are many and widely studied. The benefits of beta glucans are support for and improvements of the function of the immune system.

Benefits of beta glucan result because beta glucans are active compounds found in the cell walls of yeast, fungi and seaweed and are extracted and made into a dietary supplement. The beta glucans are known as “biological response modifiers”, meaning they change the response of certain parts of your immune system…and in a good way. ♦

The benefits of beta glucans revolve around modifying certain parts of our immune system known as macrophages, NK cells (natural killer) and neutrophils (white blood cells). ♦

  • The purpose of a macrophage is to monitor blood and lymph fluid. Upon finding something that should not be there, they perform phagocytosis which is the destruction of invaders by ingestion.
  • The purpose of an natural killer cell is to examine other cells and to kill them if they find they are not normal cells.
  • The purpose of neutrophils (white blood cells) is to patrol the bloodstream mostly for infections and to destroy the bacteria causing them.

Beta glucans bind to the above parts of our immune system and “encourage” them to be smarter and more effective. Bottom line is an improved immune system response.♦

The benefits of beta glucan can be profound in those suffering from a diagnosed immune system condition. The benefits of beta glucans can also be seen in those who simply want…as a preventative measure…to be healthier and assure themselves of a highly functioning immune system.♦


beta_glucan_30_capHow to Purchase Beta Glucans

To order 1 3 Beta Glucan, please call my office at and I will ship them to you.

100 mg. Beta-1,3D Glucan 60 capsules $ 29.95
(for general immune system support♦ – take 1 per day)

500 mg. Beta-1,3D Glucan 60 capsules $ 74.95
(support for diagnosed immune system conditions♦)

Dosage is your weight divided by 2.2 x 25 = # of mg per day)


♦ These statements have not been evaluated by the Food and Drug Administration. These products are not intended to diagnose, treat, cure, or prevent any diseases.

Benefits of Beta Glucan – Medical Studies

I have listed below a few studies that are associated with our understanding of the way beta glucans work and why it can be said that 1 3 Beta Glucan will improve your immune system.♦

1. Borchers, A. T., J. S. Stern, R. M. Hackman, C. L. Keen, and M. E. Gershwin.
1999. Mushrooms, tumors, and immunity. Proc. Soc. Exp. Biol. Med. 221:281.
2. Brown, G. D., and S. Gordon. 2003. Fungal β-glucans and mammalian immunity.
Immunity 19:311.
3. Ross, G. D., J. A. Cain, B. L. Myones, S. L. Newman, and P. J. Lachmann. 1987.
Specificity of membrane complement receptor type three (CR3) for β-glucans.
Complement Inflamm. 4:61.
4. Thornton, B. P., V. Vetvicka, M. Pitman, R. C. Goldman, and G. D. Ross. 1996.
Analysis of the sugar specificity and molecular location of the β-glucan-binding
lectin site of complement receptor type 3 (CD11b/CD18). J. Immunol. 156:1235.
5. Xia, Y., V. Vetvicka, J. Yan, M. Hanikyrova, T. N. Mayadas, and G. D. Ross.
1999. The β-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its
function in generating a primed state of the receptor that mediates cytotoxic
activation in response to iC3b-opsonized target cells. J. Immunol. 162:2281.
6. Ross, G. D. 2000. Regulation of the adhesion versus cytotoxic functions of the
Mac-1/CR3/M2-integrin glycoprotein. Crit. Rev. Immunol. 20:197.
7. Brown, G. D., and S. Gordon. 2001. Immune recognition: a new receptor for
β-glucans. Nature 413:36.
8. Taylor, P. R., G. D. Brown, D. M. Reid, J. A. Willment, L. Martinez-Pomares,
S. Gordon, and S. Y. Wong. 2002. The β-glucan receptor, dectin-1, is predominantly
expressed on the surface of cells of the monocyte/macrophage and neutrophil
lineages. J. Immunol. 169:3876.
9. Brown, G. D., P. R. Taylor, D. M. Reid, J. A. Willment, D. L. Williams,
L. Martinez-Pomares, S. Y. Wong, and S. Gordon. 2002. Dectin-1 is a major
β-glucan receptor on macrophages. J. Exp. Med. 196:407.
10. Ross, G. D., R. A. Thompson, M. J. Walport, T. A. Springer, J. V. Watson,
R. H. R. Ward, J. Lida, S. L. Newman, R. A. Harrison, and P. J. Lachmann. 1985.
Characterization of patients with an increased susceptibility to bacterial infections
and a genetic deficiency of leukocyte membrane complement receptor type 3 and
the related membrane antigen LFA-1. Blood 66:882.
11. Cain, J. A., S. L. Newman, and G. D. Ross. 1987. Role of complement receptor
type three and serum opsonins in the neutrophil response to yeast. Complement
Inflamm. 4:75.
12. Xia, Y., and G. D. Ross. 1999. Generation of recombinant fragments of CD11b
expressing the functional β-glucan-binding lectin site of CR3 (CD11b/CD18).
J. Immunol. 162:7285.
13. Diamond, M. S., J. Garcia-Aguilar, J. K. Bickford, A. L. Corbi, and
T. A. Springer. 1993. The I domain is a major recognition site on the leukocyte
integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol.
120:1031.
14. Vetvicka, V., B. P. Thornton, and G. D. Ross. 1996. Soluble β-glucan polysaccharide
binding to the lectin site of neutrophil or NK cell complement receptor
type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating
cytotoxicity of iC3b-opsonized target cells. J. Clin. Invest. 98:50.
15. Vetvicka, V., B. P. Thornton, T. J. Wieman, and G. D. Ross. 1997. Targeting of
NK cells to mammary carcinoma via naturally occurring tumor cell-bound iC3b
and β-glucan-primed CR3 (CD11b/CD18). J. Immunol. 159:599.
16. Yan, J., V. Vetvicka, Y. Xia, A. Coxon, M. C. Carroll, T. N. Mayadas, and G. D. Ross. 1999. β-Glucan, a “specific” biologic response modifier that uses antibodies to target tumors for recognition by complement receptor type 3 (CD11b/CD18). J. Immunol. 163:3045.

17. Hong, F., R. D. Hansen, J. Yan, D. J. Allendorf, J. T. Baran, G. R. Ostroff, and

G. D. Ross. 2003. β-Glucan functions as an adjuvant for monoclonal antibody

immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer

Res. 63:9023.

18. Nanba, H., K. Mori, T. Toyomasu, and H. Kuroda. 1987. Antitumor action of

shiitake (Lentinus edodes) fruit bodies orally administered to mice. Chem.

Pharm. Bull. (Tokyo) 35:2453.

19. Suzuki, I., T. Sakurai, K. Hashimoto, S. Oikawa, A. Masuda, M. Ohsawa, and

T. Yadomae. 1991. Inhibition of experimental pulmonary metastasis of Lewis

lung carcinoma by orally administered β-glucan in mice. Chem. Pharm. Bull.

(Tokyo) 39:1606.

20. Cheung, N. K., S. Modak, A. Vickers, and B. Knuckles. 2002. Orally administered

β-glucans enhance anti-tumor effects of monoclonal antibodies. Cancer

Immunol. Immunother. 51:557.

21. Cheung, N. K., and S. Modak. 2002. Oral (133),(134) β-glucan synergizes

with antiganglioside GD2 monoclonal antibody 3F8 in the therapy of neuroblastoma.

Clin. Cancer Res. 8:1217.

22. Hank, J. A., R. R. Robinson, J. Surfus, B. M. Mueller, R. A. Reisfeld,

N.K. V. Cheung, and P. M. Sondel. 1990. Augmentation of antibody dependent

cell mediated cytotoxicity following in vivo therapy with recombinant interleukin

2. Cancer Res. 50:5234.

23. Xing, P. X., J. Prenzoska, K. Quelch, and I. F. McKenzie. 1992. Second generation

anti-MUC1 peptide monoclonal antibodies. Cancer Res. 52:2310.

24. Jamas, S., C. K. Rha, and A. J. Sinskey. 1989. Glucan compositions and process

for preparation thereof. U.S. Patent 4810646. Issued March 7, 1989.

25. Brown, G. D., J. Herre, D. L. Williams, J. A. Willment, A. S. Marshall, and

S. Gordon. 2003. Dectin-1 mediates the biological effects of β-glucans. J. Exp.

Med. 197:1119.

26. Taguchi, T. 1987. Clinical efficacy of lentinan on patients with stomach cancer:

end point results of a four-year follow-up survey. Cancer Detect. Prev. Suppl.

1:333.

27. Matsuoka, H., Y. Seo, H. Wakasugi, T. Saito, and H. Tomoda. 1997. Lentinan

potentiates immunity and prolongs the survival time of some patients. Anticancer

Res. 17:2751.

28. Kidd, P. M. 2000. The use of mushroom glucans and proteoglycans in cancer

treatment. Altern. Med. Rev. 5:4.

29. Tsukagoshi, S., Y. Hashimoto, G. Fujii, H. Kobayashi, K. Nomoto, and K. Orita.

1984. Krestin (PSK). Cancer Treat. Rev. 11:131.

30. Suzuki, I., K. Hashimoto, N. Ohno, H. Tanaka, and T. Yadomae. 1989. Immunomodulation

by orally administered β-glucan in mice. Int. J. Immunopharmacol.

11:761.

31. Nanba, H. 1995. Activity of maitake D-fraction to inhibit carcinogenesis and

metastasis. Ann. NY Acad. Sci. 768:243.

32. Soares, M. M., V. Mehta, and O. J. Finn. 2001. Three different vaccines based on

the 140-amino acid MUC1 peptide with seven tandemly repeated tumorβ-specific

epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-

transgenic mice with different potential for tumor rejection. J. Immunol. 166:

6555.

33. Leyland-Jones, B. 2002. Trastuzumab: hopes and realities. Lancet Oncol. 3:137.

34. Ranson, M., and M. X. Sliwkowski. 2002. Perspectives on anti-HER monoclonal

antibodies. Oncology 63(Suppl. 1):17.

35. Cerny, T., B. Borisch, M. Introna, P. Johnson, and A. L. Rose. 2002. Mechanism

of action of rituximab. Anticancer Drugs 13(Suppl. 2):S3.

36. Johnson, P., and M. Glennie. 2003. The mechanisms of action of rituximab in the

elimination of tumor cells. Semin. Oncol. 30:3.

37. Waldmann, H. 2002. A personal history of the CAMPATH-1H antibody. Med.

Oncol. 19(Suppl.):S3.

38. Keating, M. J., I. Flinn, V. Jain, J. L. Binet, P. Hillmen, J. Byrd, M. Albitar,

L. Brettman, P. Santabarbara, B. Wacker, and K. R. Rai. 2002. Therapeutic role

of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of

a large international study. Blood 99:3554.

39. Herbst, R. S., and D. M. Shin. 2002. Monoclonal antibodies to target epidermal

growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer

94:1593.

40. Mendelsohn, J. 2002. Targeting the epidermal growth factor receptor for cancer

therapy. J. Clin. Oncol. 20:1S.

41. Sliwkowski, M. X., J. A. Lofgren, G. D. Lewis, T. E. Hotaling, B. M. Fendly, and

J. A. Fox. 1999. Nonclinical studies addressing the mechanism of action of trastuzumab

(Herceptin). Semin. Oncol. 26:60.

42. Spiridon, C. I., M. A. Ghetie, J. Uhr, R. Marches, J. L. Li, G. L. Shen, and

E. S. Vitetta. 2002. Targeting multiple her-2 epitopes with monoclonal antibodies

results in improved antigrowth activity of a human breast cancer cell line in vitro

and in vivo. Clin. Cancer Res. 8:1720.

43. Sanda, M. G., N. P. Restifo, J. C. Walsh, Y. Kawakami, W. G. Nelson,

D. M. Pardoll, and J. W. Simons. 1995. Molecular characterization of defective

antigen processing in human prostate cancer. J. Natl. Cancer Inst. 87:280.

44. Porgador, A., O. Mandelboim, N. P. Restifo, and J. L. Strominger. 1997. Natural

killer cell lines kill autologous 2-microglobulin-deficient melanoma cells: implications

for cancer immunotherapy. Proc. Natl. Acad. Sci. USA 94:13140.

45. Hicklin, D. J., Z. G. Wang, F. Arienti, L. Rivoltini, G. Parmiani, and S. Ferrone.

1998. 2β-Microglobulin mutations, HLA class I antigen loss, and tumor progression

in melanoma. J. Clin. Invest. 101:2720.

Important Patient Links

Pin It on Pinterest

Share This